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1 Objectives

In current technologies, given the high reliability required in almost all systems, the
ability to detect a system fault at the eérliest possible stage is of primary interest. The
routine manual inspections required for structures in mec\}xanical, civil and aerospace fields,
significantly increase maintenance cost. Our objective is to dgvelop and implement a self-
diagnostic tool that would reduce costs while also increasing ;ystem efficiency and reducing
risk. In addition, diagnostic tools can provide information on inaccessible parts in the.
structure. To provide the necessary architecture for this health maintenance, an array of

sensor is used to monitor the system.

2 Status of Effort

During this grant, a fault detection filter was developed for structural health monitoring
of a simply supported beam. More complex structures would be addressed later. The filter
design is based on a mathematical model of the structure and relies on four measurements

and one actuation point. Based on structural analysis, the structural damage is decomposed

1




and reduced to a fault direction vector that maintains a fixed direction in the detection
space. We show that this fault detection vector can be detected and uniquely identified and

thereby, the structural damage is detected and localized.

3 Accomplishments/New Findings

During this grant, robust fault detection filter based on a spectrai design method is
implemented for a simply supported beam and is shown to both identify and localize struc-
tural faults. See Appendix A for details. The algorithm is specifically accomplished using 4
sensors and 1 actuator and relays on a mathematical model of the structuré. The detection
filter design is based on fault direction vectors that can be uniquely associated with any
structural fault occurring at the beam. At each damage locations the detection filter mea-
surement residual vector produces a fixed direction independent of the fault (damage) size
that can be uniquely identified. The numerical simulations are compared with experimental
results produced by an aluminum simply supported beam and show good agreement. The
measurements and actuation of the beam are obtained with piezoelectric transducers that
ensure a large operating bandwidth. Although the algorithm is designed specifically for 4
measurements, it can be adapted to virtually any number 6f sensors. This is a fundamen-
| tal properties for structural health monitoring because, depending on structure complexity,
the damage detection must be accomplished using the least number of sensors. The fault;—
detection filter methodology can also include sensors and actuator faults, as well as plant
faults as addressed here. However, in this grant period, only structural faults are considered.

For the implementation of the fault detection filter, the following equipments where uti-
lized: 1) A Wavetek 10MHz DDs Mod. 29 function generator to produce the sinusoidal
inputs for the actuator, '2) a low impedance Burleigh PZ 150M volt amplifier for the ampli-
fication of the actuator input, and 3) a National Instruments PCI-MIO-16E-1 PC card for
data acquisition. The data from the sensors and actuator were sampled at 40 Ksample/sec
and each acquisition lasted asted 10 seconds. In order to reduce the noise effect, digital

Chebychev low pass and band-pass filter where appropriately designed for each of the input




and output signals. The state integration was obtained with a Runge—Kutta_ fourth or-
der method using Matlab software. The actuator input was approximately 120 Volts after
amplification and the aQerage output from the sensors was approximately 2 Volts!. The
norms of the projected residuals obtained from the undamaged structure had magnitude of

approximately 10~2, indicating gqod tracking of the filter.

(b) Filter N°4

Figure 1: Measured data. Filter N° 1 and Filter N° 4. Normalized norms of the projected

residuals: A) Before damage and B) after damage

IThe average measured capacitance of each sensor is C 2 3nF resulting in high impedance and thereby

high voltage output even with small currents generally experienced with piezoelectric transducers.




The damage inflicted upon the structure was a saw cut of approximately 5Smm X 1 mm

'made on one side of the beam at approximately 448 mm from the beam left-hand edge. The

saw cut position was chosen coincident with the pre-defined fault location N° 9. A new set
of data was taken from the damaged structure and compared with the estimate of the fault
detection filter. The resulting norms of the projected residuals are shown in figure (1) for
filter N° 1 and filter N° 4, respectively. Recall that, for this scenario, filter N° 1 is the
filter that supposedly should detect the damage. In the figure, for each ﬁiter, in case A) are
shown the normalized norms of residuals before damage occurs and iﬁ case B) are shown
the normalized norms of residuals after damage has occurred. The residuals are normalized
with respect to values obtained before damage had occurred. As it can be seen from figure
(1), in both filters, when there was no damage, all the three residuals have similar va;lues.
After damage occurred, in filter N° 1, the norm of the pre-defined fault direction, location
9, increased approximately 3 times while the other two norms, location 13 and 15, were
essentially unchanged. This indicated that the projector 9 detected a damage coincident
with the fault location 9. For filter N° 4, instead; all the residual norms increased indicating
that no specific fault was detected. Although not shown, the residual norms of filter N°
2, 3 and 5, after damage had occurred, showed a behavior similar to the one of filter N° 4

indicating that no specific fault was detected.
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Abstract

In this paper, a fault detection filter is developed for structural health monitoring
of a simply supported beam. The filter design is based on a matheﬁatical model of the
structure and relies on four measurements and one actuation point. Based on structural
analysis , the structural damage is decomposed and reduced to a fault direction vector
that maintains a fixed direction in the detection space. According to detection filter the-
ory, this fault detection vector can be detected and uniquely identified and thereby, the
structural damage is detected and localized. The design algorithm uses an eigenstruc-
ture assignment approach which allows accommodation of ill-conditioned eigenvectors
in the construction of the gains. For this particular design, 15 pre-defined fault po-
sitions are simulated so that the corresponding fault direction vectors are utilized as
basis to identify any of the infinite possible damage locations. The design required 5
fault detection filters each of one using 3 of the 15 pre-defined fault locations. The
filter is applied to the data obtained from experimental results of an aluminum simply
supported beam with 4 piezoelectric sénsors and 1 piezoelectric actuator. In particular,
by exciting the structure at the first natural frequency, a 3.5 mm saw cut made to one

side of the aluminum beam, is detected and localized.




1 Introduction

In current technologies, given the high reliability required in almost all systems, the abil-
ity to detect a system fault at the earliest possible stage is of primary interest. The routine
manual inspections required for structures in mechanical, civil and aerospace fields, signif- '
icantly increase maintenance cost. Implementing a self-diagnostic tool would reduce costs
while also increasing syétem efficiency and reducing risk. In additiori, diagnostic tools can
pfovide information on inaccessible parts in the structure. Damage detection is therefore,
an important asset. A system that continuously monitors a structure in order to detect
damage, is often referred to as a health monitoring system. While tﬁe potential payoffs
are high, developing a reliable technique to monitor damage evolution in a structure is a
difficult task to achieve. In past decades, many different approaches have been proposed
and among them_, the updated modal parameter methods are the most prominent. The idea
of utilizing updated modal parameters for health monitoring approaches is as follow. Sup-
pose that the finite element model (FEM) of the structuré has been refined and validated
by test data prior to damage. Next, assume at some later date, structural damage has
occurred and a new set of data has been taken. Then, the discrepahcies between the new
set of acquired dabt;ab and the previous refined FEM model, génerally resulting in a matrix
of sparse data, can be used to locate the damage. The baseline of these techniques»utilize
iterative algorithms to identify differences either in the stiffness matrix or in the flexibility
matrix prior to and following damage. A review of these health monitoring methods can
be found in reference [1] while some interesting results along with some generic issues and
limitations are found in reference [2]. The limiting issues of all these techniques are related
to the iterative algorithm and its numerical error that can overtake the small ‘differe.nces
obtained between the update matrices and the baseline and thereby‘ lowering the method
sensitivity to damage. In addition, a possible sénsor or actuator fault cannot be included
in the analysis and could rase misleading conclusions. |

An alternative approach can be obtained by using the fault detection filter theory that

creates an estimated output based on a baseline structural model. The filter residual, com-




posed of the difference between the estimated output and the measured one, is constructed
to have an invariant direction in the presence of an element from a set of a priori faults
which allows both detection and identification. The fault detection filter was first intro-
duced by [3] and refined by [4] and is also known as Beard-Jones detection filter. A spectral
analysis of the Beard-Jones detection filter and an improved design algorithm have been
developed in [6]. Furthermore, an important geometric interpretation of the Beard-Jones
detection filter has been developed in [5]. Based on this geometric interpretation, a new
fault detection filter, called restricted diagonal detection filter, has been generalized from the
Beard-Jones detection filter [5]. Finally, design algorithms have been developed to improve
the robustness of both fault detection filters [7,8]. In particular, the spectral method of [7] is
applied here. The filter effectiveness has been proved in a number of practical applications
such-as sensor and actuator faults in automotive systems, references [9] and [10], and for
GPS/INS navigation system, reference [11]. However, very few applications of structural
heaith monitoring can be found in literature. Probably, the first example was p;esented
by Mehra and Peshon (1970), [12], that proposed a Kalman filter to estimate the changes
in the time domain of a faulty system. Among other possible applications, fault detection
for an aircraft jet engine is included, even though no specific algorithm was provided. A
more recent example is found in Waller and Schmidt (1999), [13], where system identifi-
cation through an extended Kalman filter is used. The idea is to update the filter and
identify the changes in the system parameters. By using an analytical model and tracking
the updated parameters, the fault can be localized. The proposed approach relies on single
frequency shifts that are generally very small and therefore highly affected by instrumen-
tation error. Another approach is proposed by Fritzen and Mengelkamp (2002), [14], that
utilized a vibration based, time-domain method with a Kalman filter that detects fault by
the increase of covariances from the residuals. From the statistical evaluation, one can then
setup a threshold to judge the degree of significance in the observed chahges and determine
whether the changes are indeed resulted from damage in the system or disturbances due to
noise. The approach is implemented for a composite panel with stringers and it is shown

effective in detecting damage even though the method is incapable of damage localization.




In this paper, the fault detection filter [7] is implemented for a simply supported beam
and is shown to both identify and localize structural faults. The algorit_hm is specifically
accomplished using 4 'sensors and 1 actuator and relays on a mathematical model of the
structure. The detection filter design is based on fault direction vectors that can be uniquely
associated with any structural fault occurring at the beam. At each damage locations the
detection filter measurement residual vector produces a fixed direction independent of the
fault (damage) size that can be uniquely identified. The numerical simulations are compared
with experimental results produced by én aluminum simply supported beam and show good
agreement. The measurements and actuation of the beam are obtained with piezoelectric
transducers that ensure a large operating bandwidth. Although the algorithm is designed
specifically for 4 measurements, it can be adapted to virtually a.hy number of sensors. This is
a fundamental properties for structural health ménitoring because, depending on structure
complexity, the damagé detection must be accomplished using the least number of sensors.
The fault-detection filter methodology can also include sensors and actuator faults, as well

- as plant faults as addressed here. However, in the present paper, only structural faults are

considered.

2 Fault Detection Filter. General Theory

Consider a linear time invariant system

z=Az + Bu
1)
y=Cz
where A, B and C are matrices, u is the input and y is the measurement. Suppose that g
failure modes, associated with actuator, plant, and sensor faults, occur in the system. Then,
for the purposes of fault-detection filter design [15] the system equations in the presence of
a fault have the uniform structure
q
z=Az + Bu + ZFiﬂi
i=1 (2)

y=Cz




where F; are assumed known faﬁlt direction flectors related to each fault and p; (failure
magnitudes) are unknown a;rbitra,ry time functions. We assume that F; are monic, so that
pi # 0 implies that F; u; # 0. Equation (2) represents the physical way plant and actuator
faults enter a system. To include sensor faults in this form requires a transformation [15).

The detection filter is a linear observer
=A% + Bu + L(y—C3) - (3)

where the gain L is to be chosen so that the residual associated with a particular fault has
a unique directional behavior. Define a residual, 7, between the true measurement, y, and

the estimate measurement % such that
r=(y— C%) 4)

Subsequently, by defining the error between true state, (x), and estimated state, (Z), e =
(z — ), from equations (2), (3) and (4), the error system dynamic equation is obtained as
‘ q
¢=(A-LC)e + Y F ,
i=1 (5)
r = Ce

If the observer gains L are chosen such that (A-LC) is stable and if (C, A) is observable,
then after a transient response and in absence of disturbances, the steady state resid_ua.l T
is nonzero only if y; are different from zero. Therefore, any stable observer can detect the
fault by monitoring the residual. A more difficult task is to determine which of the ¢ faults
has occurred. The fault detection filter is capable of distinguishing among them. The idea
is to define the filter gains L such that the error e remains in an invariant subspace when
the fault occurs. This invariant subspace is called a detection space. These subspaces must
not overlap each other in order to guarantee the identification of the fault. The invariance
of the subspaces with the condition given as follows, implies that the residual T has fixed
directions. In order to isolate the faults, projectors H; are designed such that thc; projected

residual (R; = Hjr) is sensitive only to the i-th fault. There are several algorithms developed




for determining the filter gains. In our analysis, the algorithm adopted is from Douglas and
Speyer, reference [7].
Some requirements for the fault decomposition, equation (5) must be accomplished in

order to uniquely identify the fault and are:
1. The fault vectors F; must be output separable, i.e. [CFy,..., CFy has full rank q.
2. The fault vectors F; must be mutually detectable (see reference [7]).
3. (C, A,F; ) do not have invariant zeros at origin.

The first requirement guarantees that each fault can be isolated from other faults. When
a fault p; occurs, the errc;r e remains in a fixed subspace and the residual remains in an
associated output subspace. If all the outpﬁt subspaces are independent, the fault can be
identified by projecting the residual. The second requirement, ensures that the filter eigen-
values can be assigned arbitrarily. To arbitrarily assign all eigenvalues of A — LC requires
that the sum of the ranks of all the detection spaces be equal to the rank of the detection
space constructed from all the faults combined together. The third requirement guarantees
that the projected residuals are non zero in steady state as long as their associated faults
exists. All the mathematical issues and details relate to the design as well as the filter

limitations, are extensively described in reference [7].

Figure 1: Scheme of the simply supported beam. Included are the damaged region, one

piezoelectric sensor and one piezoelectric actuator




3 Simply supported beam

The structure is an aluminum simply supported beam of rectangular cross section with
a piezoelectric actuator placed on the bottom of the beam surfa.ce and piezoelectric sensors
placed on the beam top surface, as shown in figure (1). The reference frame is taken from
the center of the cross secfion such that the x-axis coincides with the beam neutral axis.
The analysis is limited to the bending behavior of the s‘tructure‘ and small deformations are
assumed. The Euler-Bernouilli hypothesis are assumed of plane sections that rotate because
of bending and remain plane after.deformation [16]. The beam’s potential (Pg) and kinetic

energy (Tg) is expressed in terms of vertical displacements, w(z,t), [16]

1 62 1 ow\* of w\?
PB—-§ /‘./BEB{ = 2}dV TB—--z—-/‘./BpB{(—a—t-) + 2z (-————axat) }dV (6)

where Eg and pp are the structure Young’s Modulus and mass density, respectively and
the integrals are extended to the beam volume Vp. Equation (6) is valid only for an un-
-damaged structure. However, when damage is present, different expressions are necessary.
In order to represent a crack-type damage, a region of the structure is modelled such that
the crack-type damage has different stiffness (Young’s Modulus) when compared with the
undamaged structure (see figure 1). The mass density of damaged region is assumed un-
changed because of the negligible mass reduction due to a crack. The displacements across
the undamaged-damaged-undamaged interfaces are assumed continuous. With these as-
sumptions, the kinetic energy, Tp, remains uncha.ngéd while the volume integral of the
potentxa.l energy must be partitioned because the Young s Modulus is not constant along
the structure length. By defining Vgp and Eyp the volume and Young’s Modulus of the
damaged region, respectively, the potential energy for the damaged structure can be written
as: , ,
R T = LA
For the piezoelectric actuator, the potential energy must account for the electro-mechanical

coupling and this can be done by intfoducing the electrical enthalpy, [17]

A1 "E *w g Pw\z  cm
PA_G_2/VA{E ( zﬁ) 2 dy E ( 25 | B - B2 tav (8)
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where V is the actuator volume, EF is the actuator Young’s Modulus obtained at constant
electric ﬁeld,‘ ds is the piezoelectric stress /chérge coefficient, E is the applied electric field
and € is the transducer permittivity assumed constant. Equation (8) is obtained in the
hypothesis of piezoelectric transducer polarized in the thickness direction and considering
its longitudinal deformations as the only relevant for the case. Note that, the first term of
equation (8), represents the potential energy due to the strain energy while the remaining
two terms are the contribution of the electric field.

Equation (8) could be utilized for the sensor as well. However, for the sensor, given
the small electric field experienced, the strain energy contribution to the overall energy is

predominant and the electrical terms can be neglected. Thus, the potential energy for the

Py = -;- /V S{ES (—zg—i’;—’)2}dv ©)

where Vg is the sensor volume and Eg is the sensor Young’s Modulus.

sensor can be written as

The kinetic energy for the actuator, T4 and sensor, Tg, are:'[16]
1 ow\? of w %
o=z Lo () +=(aem) 1
9 2 (10)
=2 .1\ 5 Bzt

where p4 and pg are the actuator and sensor mass density, respectively.

Il

_The equation of motion are obtained by applying the Rayleigh-Ritz method, [16], that
approximates the unknown displacements w(z,t) with a series of shape functions referred
to as admissible furictions. These functions are required to satisfy the natural boundary
condition that for the simply supported beam are w(0,t) = w(L,t) = 0. For this case sinu-
soidal functions are eligible as shape functions and the displacement w(z,t) are expressed

as

q . q
wiz,t) = 3 By() sin (22—’”) =3 B;(t) sin(kse) ey
j=1

=1

Note that these admissible functions coincide with the mode shapes of the structure and
therefore provide us with some physical information of the dynamic behavior of the beam.

Upon substitution of equation (11) into equations (7)- (10), the pot/ential and kinetic energy

8




are expressed in terms of the series expansion coe‘fﬁcients B;(t). The system Lagrangiaﬁ,
L(B;(t), Bj (t),t) = Trot — Prot, is thereby obtained by collecting the energy expressions of
the sensor, actuator and beam. vBy means of Lagrange’s Equations, the Lagrangian provides
the equation of motion

[MI{X (@)} + K] {X(®)} = {Q} - (12)
where {X(t)} = {B1, By, ..., B,}" is the generalized vector, [M] and [K] are the gener-
alized mass and stiffness matrices, respectively and {Q} is the generalized forcing ‘terms.
In the equation of motion, damping is included by means of modal coefficients, ¢;, whose

values are evaluated based on the experimental measurements, [18]
Dl=M&AST [M], A=| 2&w; (13)

In equation (13), w; are the system natural frequencies and the matrix @ is obtained with
the system eigenvectors ordered column-wise & = [¢1, @2, ...,¢n|. By means of equation

~ (13), the equation of motion can be written in its final form
[MI{X ()} + [DHX (®)} + [K] {X(£)} = {Q} (14)

3.1 State-variable description

The equation of motion (14), is rearranged in a linear time invariant state space form

{(t) = A¢(t) + BA¢a
(15)

X(t) = C*((8)

where the state vector is defined by means of the generalized displacement vector {(t) =

{xX@, X (t)}T, A¢ 4 is the voltage input applied to the actuator and A, B and C* are




defined as follows!

0 I

A= , C*=[1,0]
~-M~'K -M™'D
(16)
0
B= , QA%,=0Q
Q*

The output 'fr'om equation (15) is the generalized displacement vector, whose components
are the coefficients of the series expansion, equation (11).

For the current analysis, the output .voltage from each sensor is required which is propor-
tional to the strains experienced by the piezoelectric. Because this voltage is generally very
small, the hypothesis of zero fluz, [17], can be issued such that, neglecfing the transVersal
deformation, gives V
Bz, 2,t) = — dn ?Sii (_2%)&1.- (17)

In equation (17), in addition to the quantities defined in equation (8), the parameter eSL

is utilized which represent the clamped piezoelectric permittivity [17]. The voltage output
is obtained as the averaged value along the sensor electrodes of the integral of the electric
field over its thickness, i.e.

Tasi  ftB/2+tsi 8%w
Ads; = a/ (—z——) dz dz
' - dz?

15i JtB/2
E§  bsi
ST |zasi — T1si

(18)
a=—dy

where bg; is the sensor width, tg; is the sensor thickness and z15;, andzeg;, are the starting

and ending abscissaes of the sensor. This integration processes can be included in the state

variable form by defining a new matrix C as follows

.ﬂl- - 4 A(;SSl(t) )
A . .
[C] = ﬂ: lerl —  Ags =4 ¢f2(t) ¢ = [CK(®) (19)
A | Adsn() |

1In order to reduce the symbology, the following notation is adopted: [M] = M, [K] = K and [Q] = Q.
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where A¢g; are the voltage outputs of each sensor and the vectors (; are obtained after
integration of equation (18). The final form of the state variable description can be written
as

{(t) = AL(t) + BAg4

Ags = C((t)

(20)

For the simply supported beam described in this paper, the number of mode-shapes em-
ployed in equation (11) is 14 and therefore stiffness, mass and damping matrices have
dimensions: dim(M) = dim(K) = dim(D) = 14 X 14, respectively, while the matrix A
has dimension dim(A = 28 x 28). One actuator and four sensors where utilized so that
the resulting B and C matrices have dimensions dim(B) = 28 x 1 and dim(C) = 4 x 28,

respectively.

3.2 Fault decomposition

In order to utilize the fault detection filter, the structural damage needs to be reduced
" _to the form in equation (2), which implies the generation of the fault direction vectors, F;
and the failure amplitudes, ;. This can be achieved as follows. By assuming that a fault
occurs in the beam, and no faults occurs in the sensor and actuator arrays, the A matrix

(equation (16)), changes as follows

—_ 0 I 0 0
A=(A+6A)= ) + (21)
MK M-D M-16K 0
where §K is the variation of the stiffness matrix. Recall that it is assumed that the damage
effects only the stiffness of the structure while its mass remains unmodified.
The matrix §A can be decomposed by means of a singular value decomposition. Note

that, from equation (21), the rank of the matrix §A is essentially related to the rank of the

matrix K and therefore, the singular value decomposition of 6K is

SK=UZXV (22)

11




By defining the fault direction matriz, F, and failure amplitude, u, as follow
0 N
F= , =140 IV ¢ (23)
M—l U .
with ¥ and ¢, the state vector, being unknown, the state variable description of the damaged

structure can be written as:

{(t) = A(t) + BAga+ F p
A¢s = C((t)

This procedure can be repeated for each fault location. For the structure in consideration,

(24)

recalling that a total of 14 mode shapes or shape functions were utilized, the resulting state
. dimension was R?. The matrix K was obtained for numerous fault locations and for
different damage sizes. However, it was noticed that, when the fault size was sufficiently
small, the rank of the K matrix was constant (rank(86K) = 1) for all the different positions
simulated. Therefore, 1 fault direction vector, F;, (dim(F) = 28x1) and 1 failure amplitude,
pi, (dim(p) = 1 x 1) is associated with each of the infinite fault positions. This can be
seen in figure (2) where the first two singular values of the K matrix obtained at a fixed
damage position and for different damage sizes are shown. The damage sizes are expressed
as percentage of the beam length. It can be seen from figure (2) that, while the magnitude -
of one singular value is approximately constant, the magnitude of other drops shari)ljf with‘
the decrease of fault size. Therefore, because we were interested in detecting damage at the
earliest stage possible, that is for a fault magnitude as small as possible, only the vector
associated with the greatest singular value was kept as fault direction vector for our analysis.

In addition to the rank of the K matrix, the variation in directions of the fault vectors
was investigated as function of the damage size. A baseline fault direction vector was
obtained by simulating a damage in a generic position whose size was 1% of the beam
length. Then, the damage size was varied and the new resulting fault detection vector was
compared with the baseline. The comparison was obtained by means of the inner product
between the two vectors and the results are shown in figure (3). From the figure, it can be

seen that, up to approximately 4% size, the inner product is close to unity, meaning that
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Figure 2: Singular values relative to the 4 vectors obtained from the decomposition of the

simply supported beam, obtained for different fault sizes.

the directions of these vectors do not change significantly.

Based on these two investigations, we concluded that any sufficiently small damage
~ sizes produces only one significant fault direction vector, whose amplitude and direction is
approximately independent of fault size, and only dependent on fault location. Therefore,
for each of the infinite damage locations, one can associate one fault vector and a fault
detection filter can be used to detect and locate each of them. More detail of this fault

decomposition can be found in reference [19].

4 Filter Design

~ The filter design is implemented by defining pre-simulated fault locations forming a basis
for the identification of each of the infinite possible faults that might occur. The algorithm
is obtained from reference [7] and adapted to the beam structure. For this case, based on
the Douglas-Speyer theory to build only one detection filter requires that as many measure-
ments as half of the dimension of the state vector be available. For example, because R?,
the number of measurements requir(_ed would be n=14. However, requiring this many sen-
sors éan be a limiting issue for practical implementations and a modification of the original

algorithm is presented here. The algorithm is implemented by designing five filters, each
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Figure 4: Scheme of the simply supported beam with 4 measurements and 15 simulated

faults used in the design of 5 fault detection filters.

of them utilizing three pre-defined fault diréction vectors positioned evenly in the interval
between two sensors. A scheme of the measurements and the pre-defined fault locations
is shown in figure (4). Although the algorithm is presented for this specific case of four
sensors, s = 4, it can be adapted for virtually any number sensors providing s > 2.

The pre-defined fault direction vectors satisfies the three requirements listed in section(2), |
i.e. are mutually detectable, output separable, and (C,A, F;) do not have invariant zeros
at origin. For each filter design one wants to choose the filter gains, L, such that, if a fault
occurs, the residual remains in an invariant subspace 7; (detection space). To ensure this,
the filter eigenvalues are assigned such that they have equal values. In order to uniquely
identify each fault, these.subspaces need to be non intersecting with each other, and their

dimension must entirely fill the system space. The detection spaces associated with each
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fault, 7;, have dimension dimn(7;) = 2. Therefore, the three detection spaces do not fill the
dimension of the state space. For example, for filter one; the detection spaces associated

with the faults Fy, F> and F3 (see figure (4)), are 7, 72 73, and
TUmnUT =RS - v (25)

and the resulting complementary subspace has -dimension R?2. The detection space is
obtained by assigning 2 equal eigenvalues for all the 3 fault direction filters. The comple-
mentary space is instead obtained by assigning additional 22 eigenvalues. In this design
procedure, the sets of eigenvalues chosen were complex conjﬁgated and equél for each filter,
although this is not a requirement, it allows fault directions at arbitrary damage locations
to appear in invariant directions in residual space. The procedure for establishing the de-

tection spaces and the complementary space follows next and is described separately.

4.1 Detection space

As previously mentioned, 5 filters are designed for the simply supported beam scenario
and each filter relays on 3 pre-defined fault locations. We use 3 pre-defined fault locations
rather than 4, because with 4 the system is ﬁot mu'tua.lly detectable and therefore, all the
filter eigenvalues can not be chosen arbitrarily. The procedure here described is the same
for each filter. From reference [7], the filter gains, L, can be obtained by left-eigenvector

assignment as follows:

M —-AT CTi |V 0

7 = , p=12,3 (26)
F 0 w 0
where the matrix ﬁp is obtained collecting column-wise all the fault direction vectors except

the p-th. As previously mentioned, the two eigenvalues used in this algorithm are of complex

conjugate, i.e. A\; — A and A\*. By means of equation 16, the above equation (26) can be
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rewritten in its partitioned form,
ML —(A)T CE| Y 0
I MI+(A)T 0 |3vap=10
o a@m, o) (w) o e
A, = (M7'K), Ay=(M"'D)
where the matrices £ 2 and Cp 3 are obtained from equation (19) and (22), respectivély.
The dimensions of the left matrix of equétion (26) are 30 x 32 and its range space has di-
mension 30. Although its resulting null space is two-dimensional, in thé algorithm pfesented
here, only one of t_h_e two null vectors is employed. From the third rov&; of equation (27),

because dim((F)p) = 2 x 14 and its rank is rank((ET)p) = 2, we obtain 12 independent

vectors V, that span its null space
(ED)pVa=0 — (Var), k=1,2,...,12. ~ (28)

. By substituting these twelve vectors into the second row of equation (27), a total of 12
(complex) vectors V; are obtained
(Vi)h = (Wl + A) (Vaw)p = (Vi) + (Vi)
where :
_ (29)
(VD) = (a:l + Ap)(Var)p
(Vi)h = (BT + Ap) (Vaw)y-
By substituting a linear combination of the twelve vectors, Vi and V3, in th;e first row of

equation (26)
AVi+AVa+CITW =0 (30)

: : ) T
2From equation (22), the generic fault direction vector, is defined as F; = {O ) (M ’lUi)T} and can be

rewritten as F; = {0, F,;"'}T , dim(F)=14x1
3From equation (19), the matrix C can be rewritten as

B ~
[Cl=|: |, 0=[Co0]
Ba|

and dim(Co) = 14 x 14
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and by defining o}, the generic coefficients of their linear combination, after rearranging

the terms, one obtains

)
o

(M. (M1l (@D, (€Da]4 b =—[CDa D4} (D)
afs w4
w1
\w2J

In the above equation, w;, wz, w3 and wy are the unknown components of the vector W,

(03' )s; § =1,2,3,4 are the column components of the matrix Cg and the complex vectors

(My);, are

(M) = {(MEY, + (MY} = {a: (Vi) — Bi(Vik)p (32)

+ Aa(Var)p} + 3 {B:s(Vi)} + as(Vik)p } |
Since the vectors (My);) and (CT)s have dimensions dim((My)3) = dim((C¥)s) = 14 x
1, equation (31) yields 14 algebraic equations with 16 unknown coefficients: ar, k =
1,2 ... 12, and w;, we, ws, wy, respectively. Because the vectors (Mk);,) and (CT),
are found to be linearly independent and the matrix on the left side of equation (31) has
full rank, a solution is obtained by assigning arbitrarily, two values, say wa and wy. After

recovering the coefficients of, from equation (31), they are substitute back to equation (29)

to obtain the two unknown vectors (V1) and (Va);, for each p-th fault and for each i-th

eigenvalue.
12
(Vo) =Y o (Var);
77 o " ' (33)
(V)i =Y ohaal + Ap)(Var)y +3 ) oh(bil + Ap)(Var)p
k=1 k=1

The vectors W}, V,, and (W);, = {wy, wa, ws, wy]T, composed together, constitute the
null-space vectors solution of equation (26). The procedure is repeated for each of the p

fault vectors, p = 1,2,3, and for each of the two éigenva.lues A1 and A} chosen for the
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detection spaces so that six independent vectors are obtained 4

I (L I (O |
Wi O - B 05 (34)
wo=[omn ot . nh vl

4.2 Complementary space

The procedure to obtain the null space of the complementary spaces is similar to the
one described for the detection space. As usual, the detection space basis is obtained by

left-eigenvector assignment of (26) or its partitioned form

XN —(A)T CF| v 0 ‘
I MNI+(A)T 0| (Vag =10 i=12,...,11

. : (35)
o FH o] \W 0

A, = (M—IK)v Ap = (M_ID)

All the matrices of equation are unchanged except the matrix (FE ) of the 3™ row that now

includes all the filter fault directions. For example, for ﬁlter 1, FbT is

0
Ff =R, R, F)= , dim(FF)=3x14 (36)
. F, _

As consequence, the dimension of the left matrix of equation (35) is now 31x 32 and, because
its range space has dimension equal to 31, the resulting null space is one-dimensional yielding
a unique null vector. As usual, in order to obtain this null vector, it is convenient to solve
piecewise the equation (35). From the third row of equation (35), the matrix FT has

dim(FT) = 3 x 14 and rank(F{) = 3 yielding 11 vectors, V; for each eigenvalues A;

(FIyWa=0  — (Var)'=Va, k=12 ... ,1L . (37)

4The asterisk indicates the complex conjugate vectors.
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Bj substituting the obtained vectors (Vax)* in the second row of equation (35), a.nalogoﬁsly
as for the previous case, 11 vectors (V})* are found.

The first row of equation (35) provides the vector W after substituting a linear combina-
tion of the vectors (Vix)* and (Vzx)*. Similarly as for the procedure adopted in the detection
filter, by defining o}, the generic coefficients of the linear combination, and by naming as
wy, wa, w3 and wy, the unknown components of the vector W, the first row of equation

(35), after rearranging the terms, becomes

(M. (M), (C3h, (CF)z, (CF)s]{ody ¢ =~ [(CP)a]ws  (38)
wy

w2

| ws
where (CT),, s = 1,2,3,4 are the column component of the matrix C§ and the con;plex
vectors (My)* are obtained in a similar way as for equation (32). Notice th:;t equation (38)
is a set of 14 algebraic equations with 15 unknowns: a;'c, k=12, ... 11, and w1, we, w3
and wy. On the other hand, the vectors (My)? and (CT)s, for this case are verified to be
linearly independent and thus the left side matrix of equation (38) is invertible. A solution
is therefore possible by assigning the value of one component, say wq4. Thus, equation (38)

provides the coefficients aj, of the linear combination of vectors (Vi;)* and (Vax)* and the

two vectors (V;)* and (V3)* are recovered as

12 12
(Vo) =3 aiVar, (Vi)' =) oiVa. (39)
k=1 k=1 _
The procedure is repeated for each of the eigenvalues A\; and A} chosen for the comple-

mentary spaces, to obtain a total of 22 independent vectors. These vectors are ordered into
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the following two matrices,

Ve = (Vl)ll (VI*)I . (Vl)ll (Vl*)ll
Wt ) o Bt )] - (40)
We = {(W)I (W*)l . (W)ll (W*)ll] .

Once the vector sets, Vi, Vz and W are obtained for both the detection spaces and
complementary space, the matrices defined in equations (34) and (40) are rearranged as

follows:

V = [Vp, Vcl,

(41)
W= [WD’ WC]
and the final filter gains are obtained as
LT =W(V)™! orL=(VT)'wWT (42)

4.3 Numerical simulation and optimal design

In order to illustrate the use of the fault detection filter here proposed for health mon-
itoring, we refer to the scheme of figure (4).. As already stated, the figure shows the beam
structure with 15 pre-defined fault locations utilized for the design of 5 distinct fault de-
tection filters. For this simulation, a structural fault is also included and its position is
coincident with the pre-defined fault location 2. A step input is applied to the actuator.
The filter estimate is compared with the output from the sensors to create the system resid-
uals (see equation (4)). The residuals are projected with residual projectors that annihilate

all the faults except the one for which they are designed for. The resulting norm of projected

residuals obtained for filter 1 and filter 3 are shown in figure (5)and figure (6), respectively.

The response is shown in both time and frequency domain. As one can see from figure (5),
for filter 1 that experience the structural faults, the response of the projector designed for
the pre-defined fault 2 is approximately 150 dB greater than the other two. This indicates
that a probabie faults has occurred in the pre-defined location 2. A similar scenario is

unlikely to happen for the remaining filters. As shown in figure (6), all the three norms of
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Figure 5: Time and frequency domain of the norm of the projected residuals of filter 1.

the projected residuals of filter 3, have comparable magnitude indicating that none of them
has experienced a the fault for which it was designed.

The procedure of detecting and localizing the fault is here described for a structural fault
that coincides with one of the pre-defined fault location. However, it can be shown that
similar procedure can be applied to identify structural faults at generic locations with same
filters but utilizing different projectors mapping the entire structure (see reference [19]) .

Based on the analytical simulation described, the in-situ health monitoring system should
be automated by using post-processing residuals that would provide the probability that
a faults has occurred in one of the.ﬁve filters and also determine the fault exact location.
An important aspect that should be considered is the type of input that should be utilized
in real systems. In fact, the step input utilized in our simulation is difficult to reproduce
with piezoelectric transducers. More realistic inpﬁts are periodic excitations such as single
sinusoidal waves and their frequencies should be chosen based on the dynamic response
of the structure. The best response of the structure is in the vicinity of its natural fre-
quencies and therefore, those would be perfect candidates and guarantee a good sensitivity
to damage. For‘the simply supported beam described in this paper, the sinusoidal waves
investigated as input for the piezoelectric actuator coincided with the first few structural

natural frequencies and the filter design was optimized according to them.
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Figure 6: Time and frequency domain of the norm of the projected residuals of filter 3.

In order to have satisfactory sensitivity to damage, in addition to using an optimal
input, the filter gains were also investigated. An important aspect that was considered
was the rejection of disturbances and noise. According to the scheme of figure (7), the

transmission noise, n, to residuals, r, can be written as
-’rf — H{I - C[s] — (A-LC)| 'L} (43)
and it can be seen that it can be reduced by reducing the filter gains, L. A typical trans-

NTB

n

Input xt + o N
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~ Polector

[sHA-LC) }—-{ Ci

Figure 7: Scheme of the transmission noise, n, to residual, r.

mission obtained in our optimal design is shown in figure (8) and is relative to filter N° 5.
As it can be seen from the figure, considering that the inputs used for this structure are in ‘
the low frequency range, the noise transmission amplitude is kept low up to approximatgly
100 Hz, where are the first 3 natural frequency. Notice, however, that in the high frequency
range, the noise transmission amplitude is considerably high in the order of 100 dB and

therefore, the system inputs and outputs required band-pass filters to avoid this high fre-
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Figure 8: Transmission noise to residual for filter N° 5

Filter N¢ | Fault N°

Filter 1 3,8, 11

Filter 2 | 13, 15,9

Filter 3 | 2, 5, 10

Filter 4 1,6,14

Filter 5 | 4,7,12

Table 1: Optimally clustered pre-defined fault direction vectors

quency region. Different designs can be anhieved choosing accurately the filter eigenvalues
accordingly with the input used.

Another important aspect investigated is the clustering of the pre-definite damage po-
sitions into the 5 filters. In fact, the abilify of each filter to distinguish among the fault
direction vectors is related to the directions of such vectors. Therefore, by clustering the
three pre-defined fault locations utilized for each filter such that their directions are op-
timélly different, the sensitivity to damage can be increased. The optimal configuration

obtained for the current setup is represented in table (1).
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Figure 9: Experimental test Setup.

5 Results and Discussions

The experimental setup of the aluminum simply supported beam is shown in figure (9)

and the material properties and dimensions used in the analytical model are listed in table

(2). The piezoelectric sensors are positioned on top of beam surface along the longitudinal

Density
Piezoelectric stress/charge coefficient

Clamped piezoelectric permittivity

pB = 2730 kg/m?

B Beam Sensor and Actuator
Thickness tg 3.2 mm tg = 0.125 mm, t4 = 0.6 mm
Width bp = 275 mm bs=bs= 2.5mm
Length L= 0.71lm Lg=La=4mm
Young’ modulus Eg =68.9 GPa | Eg =40.0 GPa, E4 = 80.0 GPa

ps = rhog = 7750 kg/m?
day = —274- 1012 C/N
5L = 2.46310~% C/Nm?

Table 2: Dimension and material properties

midline at 180 mm, 333 mm, 486 mm and 639 mm, respectively, from the left-hand edge

of the beam and the piezoelectric actuator is positioned on the bottom surface, along the

beam midline, at 397 mm from the left-hand edge of the beam. The position of sensors

and actuator was decided based on simulation so that both observability and controllability

of resulting state-space system was guaranteed. The measured frequency response of the
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ported beam. a) Analytical vs. b) measured data.

structure from sensor 1 is shown in In figure (10) and is compared with the analytical trans-
fer ﬁmction obtained from the model. The range of frequency shown in the figure includes
the first 14 natural frequencies. The transfer function is obtained with a Stanford Research
System Spectrum Analyzer, Model SR785 with 2048 points. As it can be seen from figure
(10), the model provides a very good agreement with the measured data with errors in the
peak frequencies approximately of the order of 2%. 7

For the implementation of the fault detection filter, the following equipments where
utilized: 1) A Wavetek 10MHz DDs Mod. 29 function generator to produce the sinusoidal
inputs for the actuator, 2) a low impeda.hce Burleigh PZ 150M volt amplifier for the ampli-
fication of the actuator input, and 3) a National Instruments PCI-MIO-16E-1 PC card for
data acquisition. The data from the sensors and actuator were sampled at 40 Ksample/sec
and each acquisition lasted asted 10 seconds. In order to reduce the noise effect, digital
Chebychev low pass and band-pass filter where appropriately designed for each of the input
and output signals. The state integration was obtained with a Runge-Kutta fourth or-
der method using Matlab software. The actuator input was approximately 120 Volts after

amplification and the average output from the sensors was approximately 2 Volts®. The

5The average measured capacitance of each sensor is C = 3nF resulting in high impedance and thereby

high voltage output even with small currents generally experienced with piezoelectric transducers.
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norms of the ;;fojected residuals obtained from thé undamaged structure had magnitude of
approximately 10~2, indicating good tracking of the filter. _ N

The damage inflicted upon the structuré was a saw cut of approximately 5mm x 1 mm
made on one side of the beam at approximately 448 hm from the beam left-hand edge. The
saw cut position was chosen coincident with the pre-defined fault vlocation N°9. A new set
of data Was'ta._ken from the damaged structure énd compared with the estimate of the fault
detection filter. The resulting norms of the projectéd residuals are shown in figure (11) for
filter N° 1 and filter N° 4, respectively. Recall that, for this scenario, filter N ° 1 is the
ﬁltér that supposedly should detect the damage. In the figure, for each filter, in case A) are
shown the normalized norms of residuals before damage occurs and in case B) are shown
the normalized norms of residuals after damage has occurred. The residuals are normalized
with respect to values obtained before damage had occurred. As it can be seen from 1"igure
(11), in both filters, when there was no damage, all the three residuals have similar values.
| After damage occurred, in filter N° 1, the norm of the pre-defined fault direction, location
.9, increased approximately 3 times while the other two norms, location 13 and 15, were
essentially unchanged. This indicated that the projector 9 detected a damage coincident
" with the fault. location 9. For filter N° 4, instead, all the residual norms increased indicating
that no specific fault was detected. Although not shown, the residual norms of filter N°
2, 3 and 5, after dé.mage had occurred, showed a behavior similar to the one of filter N° 4
indicating that no specific fault was detected.

Based on the previous results, one can conclude that the structure experienced damage
and that the damage was probably coincident with the pre-defined fault locatio‘r': 9. How-
ever, for an in-situ health monitoring system, the procedure should be automated perhaps
implementing post-proceésing residuals so that a decision can be made about the structure
health [20]. Nominally, the residual is zero in the absence of a fault and nonzero otherwise.
However, as previously stated, when driven by uncertainties and disturbances, the residual
fails to go to zero even in the absence of faults. To enhance detection and identification, the
residual processor analyzes the residual generated by the fault detection filter which can be

viewed as a static geometric pattern containing information about the presence or absence
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of a fauilt. By considering the residual processor design as a static geometric pattern recog-

' nition problem, the residual processor could be a neural network or a multiple hypothesis

Shiryayev sequential probability test which detects and identifies a fault in minimum time
with a given probability of false and miss alarm [20]. The fault identification problem is
now solved by assuming that each fault corresponds to certain hypothesis. The residual is
considered to be the measurement sequence for the multiple hypothesis Shirya.yev sequential
probability test which is assumed to be a given distribution (not necessarily Gaussian) and
conditionally independent. The conditional probability of each fault hypothesis is generated
to be used to announce the occurrence of the fault with a threshold based on a given proba-
bility of false and missed alarms. Therefore, the essential feature of the residual processor is
to analyze the residue and identify a fault, if it has occurred, wifh an associated probability.
This allows for higher level decision making which now can be based on the probability.
In the development of a health monitoring system, the fault detection filter and residual

'processor should be designed together.
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Figure 11: Measured data. Filter N° 1 and Filter N° 4. Normalized norms of the projected

residuals: A) Before damage and B) after damage
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